Creating a Contact Center in minutes using Amazon Connect

Background

In my previous blog (https://nivleshc.wordpress.com/2019/10/09/managing-amazon-ec2-instances-using-amazon-ses/), I showed how we can manage Amazon EC2 instances using emails. However, what if you wanted to go further than that? What if, instead of sending an email, you instead wanted to dial in and check the status of or start/stop your Amazon EC2 instances?

In this blog, I will show how I used the above as a foundation to create my own Contact Center. I enriched the experience by including an additional option for the caller, to be transferred to a human agent. All this in minutes! Still skeptical? Follow on and I will show you how I did all of this using Amazon Connect.

High Level Solution Design

Below is the high-level solution design for the Contact Center I built.

The steps (as denoted by the numbers in the diagram above) are explained below

  1. The caller dials the Direct Inward Dial (DID) number associated with the Amazon Connect instance
  2. Amazon Connect answers the call
  3. Amazon Connect invokes the AWS Lambda function to authenticate the caller.
  4. The AWS Lambda function authenticates the caller by checking their callerID against the entries stored in the authorisedCallers DynamoDB table. If there is a match, the first name and last name stored against the callerID is returned to Amazon Connect. Otherwise, an “unauthorised user” message is returned to Amazon Connect.
  5. If the caller is unauthorised, Amazon Connect informs them of this and hangs up the call.
  6. If the caller is authorised, Amazon Connect uses the first name and last name provided by AWS Lambda function to personalise a welcome message for them. Amazon Connect then provides the caller with two options:
      •  (6a) press 1 to get the status of the Amazon EC2 instances. If this is pressed, Amazon Connect invokes an AWS Lambda function to get the status of the Amazon EC2 instances and plays the results to the caller
      • (6b) press 2 to talk to an agent. If this is pressed, Amazon Connect places the call in a queue,  where it will be answered by the next available agent

     

Preparation

My solution requires the following components

  • Amazon DynamoDB table to store authorised callers (an item in this table will have the format phonenumber, firstname,  lastname)
  • AWS Lambda function to authenticate callers
  • AWS Lambda function to get the status of all Amazon EC2 instances in the region

I created the following AWS CloudFormation template to provision the above resources.

The above AWS CloudFormation template can be downloaded from https://gist.github.com/nivleshc/926259dbbab22dd4890e0708cf488983

Implementation

Currently AWS CloudFormation does not support Amazon Connect. The implementation must be done manually.

Leveraging on my own experience with setting up Amazon Connect solutions,  I observed that there are approximately three stages that are required to get a Contact Center up and running. These are:

  • Provisioning an Amazon Connect instance – this is straight forward and essentially is where an Amazon Connect instance is provisioned and made ready for your use
  • Configuring the Amazon Connect instance – this contains all the tasks to customise the Amazon Connect instance. It includes the configuration of the Direct Inward Dial (DID), hours or operations for the Contact Center, Routing profiles, users etc
  • Creating a custom Contact flow – a Contact flow defines the customer experience of your Contact Center, from start to finish. Amazon Connect provides a few default Contact flows however it is highly recommended that you create one that aligns with your own business requirements.

Follow along and I will show you how to go about setting up each of the above mentioned stages.

Provision the Amazon Connect Instance

  1. From the AWS Console, open the Amazon Connect service. Select the Sydney region (or a region of your choice, however do keep in mind that at the moment, Amazon Connect is only available in a few regions)
  2. Enter an Access URL for your Amazon Connect Instance. This URL will be used to access the Amazon Connect instance once it has been provisioned.
  3. In the next screen, create an administrator account for this Amazon Connect instance
  4. The next prompt is for Telephony options. For my solution, I selected the following:
    1. Incoming calls: I want to handle incoming calls with Amazon Connect
    2. Outgoing calls: I want to make outbound calls with Amazon Connect
  5. In the next screen, Data Storage options are displayed. For my solution, I left everything as default.
  6. In the next screen, review the configuration and then click Create instance

Configure the Amazon Connect Instance

After the Amazon Connect instance has been successfully provisioned, use the following steps to configure it:

  1. Claim a phone number for your Amazon Connect Instance. This is the number that users will be calling to interact with your Amazon Connect instance (for claiming non toll free local numbers, you must open a support case with AWS, to prove that you have a local business in the country where you are trying to claim the phone number. Claiming a local toll-free number is easier however it is more expensive)
  2. Create some Hour of operation profiles. These will be used when creating a queue
  3. Create a queue. Each queue can have different hours of operation assigned
  4. Create a routing profile. A user is associated with a routing profile, which defines their inbound and outbound queues.
  5. Create users. Once created, assign the users to a predefined security profile (administrator, agent etc) and also assign them to a specific routing profile

Create a custom Contact flow

A Contact flow defines the customer experience of your Contact Center, from start to finish. By default, Amazon Connect provides a few Contact flows that you can use. However, it is highly recommended that you create one that suits your own business requirements.

To create a new Contact flow, follow these steps:

  • Login to your Amazon Connect instance using the Access URL and administrator account (you can also access your Amazon Connect instance using the AWS Console and then click on Login as administrator)
  • Once logged in, from the left-hand side menu, go to Routing and then click on Contact flows
  • In the next screen, click on Create contact flow
  • Use the visual editor to create your Contact flow

Once the Contact flow has been created, attach it to your Direct Inward Dial (DID) phone number by using the following steps:

  • from the left-hand side menu, click on Routing and then Phone numbers.
  • Click on the respective phone number and change its Contact flow / IVR to the Contact flow you want to attach to this phone number.

Below is a screenshot of the Contact flow I created for my solution. It shows the flow logic I used and you can easily replicate it for your own environment. The red rectangles show where the AWS Lambda functions (mentioned in the pre-requisites above) are used.

This is pretty much all that is required to get your Contact Center up and running. It took me approximately thirty minutes from start to finish (this does not include the time required to provision the Amazon DynamoDB tables and AWS Lambda functions). However, I would recommend spending time on your Contact flows as this is brains of the operation. This must be done in conjunction with someone who understands the business really well and knows the outcomes that must be achieved by the Contact Center solution. There is a lot that can be done here and the more time you invest in your Contact flow, the better outcomes you will get.

The above is just a small part of what Amazon Connect is capable of. For its full set of capabilities, refer to https://aws.amazon.com/connect/

So, if you have been dreaming of building your own Contact Center, however were worried about the cost or effort required? Wait no more! You can now easily create one in minutes using Amazon Connect and pay for only what you use and tear it down if you don’t need it anymore. However, before you start, I would strongly recommend that you get yourself familiar with the Amazon Connect pricing model. For example – you get charged a daily rate for any claimed phone numbers that are attached to your Amazon Connect Instance (this is similar to a phone line rental charge). Full pricing is available at https://aws.amazon.com/connect/pricing/).

I hope the above has given you some insights into Amazon Connect. Till the next time, Enjoy!

Advertisements

Managing Amazon EC2 Instances using Amazon SES

Background

Most people know Amazon Simple Email Service (SES) just as a service for sending out emails. However, did you know that you can use it to receive emails as well? If this interests you, more information is available at https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html.

In this blog I will show how I provisioned a solution to manage my Amazon EC2 instances using emails. The solution uses Amazon SES and AWS Lambda. Now, some of you might be saying, can’t you just use the AWS console or app for this? Well, yes you can, however for me personally, logging into an AWS console just to get the status of my Amazon EC2 instances, or to start/stop them was more effort than I deemed necessary. The app surely makes this task trivial, however the main purpose of this blog is to showcase the capabilities of Amazon SES

Solution Architecture

Below is the high-level design for my solution.

The individual steps (labelled using numbers) are described below

  1. The admin sends an email to an address attached to an Amazon SES rule
  2. Amazon SES receives the email, performs a spam and virus check. If the email passes the check, Amazon SES invokes the manageInstances AWS Lambda function, passing the contents of the email to it (unfortunately the contents of the body are not passed)
  3. The manageInstances AWS Lambda function authenticates the sender based on the from address (this is a very rudimentary authentication system. A stronger authentication mechanism must be used if this solution is to be deployed in a production environment – maybe include a multi-factor authentication system). It extracts the command from the email’s subject and executes it
  4. The manageInstances AWS Lambda function uses Amazon SES to send the response of the command back to the admin
  5. Amazon SES delivers the email containing the command’s output to the admin

Prerequisites

To use Amazon SES for receiving incoming emails, first verify your domain within it and then point your domain’s DNS MX entry to your region’s Amazon SES endpoint. Full Instructions to carry this out can be found at https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-getting-started.html

Implementation

Lambda Function

The Lambda function is created first as it is required for the Amazon SES Rules.

The Lambda function carries out the following tasks

  • authenticates the sender by comparing the email’s from address with a predefined list of approved senders. To prevent a situation where the Lambda function can be inadvertently used as a spam bot, all emails from senders not on the approved list will be dropped.
  • checks if the specified command is in the list of commands that is currently supported. If yes, then the command is executed, and the output sent back to the admin. If the command is unsupported, a reply stating that an invalid command was specified is sent back to the admin

Here are the attributes of the Lambda function I created

Function name: manageInstances
Runtime:             Python 3.6
Region:                North Virginia (us-east-1) This is to ensure that the Lambda function and the Amazon SES rules are in the same region
Role:                     The role that is used by the Lambda function must have the following permissions attached to it

             ec2:DescribeInstances
             ec2:StartInstances
             ec2:StopInstances
             SES:SendEmail

Here is the code for the AWS Lambda function (set the approvedSenders list to contain the email address of approved senders)

The AWS Lambda function code can be downloaded from https://gist.github.com/nivleshc/f9b32a14d9e662701c3abcbb8f264306

Amazon SES Email Receiving Rule

Next, the Amazon SES Email Receiving rule that handles the incoming emails must be created. Please note that currently Amazon SES is supported in a few regions only. For my solution, I used the North Virginia (us-east-1) region.

Below are the steps to create the rule

  • Open Simple Email Service service page from within the AWS console (ensure you are in the correct AWS region)
  • From the left-hand side menu, navigate down to the Email Receiving section and then click Rule Sets.
  • The right-hand side of the screen will show the currently defined rule sets. I used the predefined default-rule-set.
  • Click on View Active Rule Set and then in the next screen click Create Rule.
  • In the next screen, for the recipient address, enter the email address to which emails will be sent to, to carry out the commands (the email domain has to correspond to the domain that was verified with Amazon SES, as part of the prerequisites mentioned above)
  • In the next screen, for actions, select Lambda.
  • Select the name of the Lambda function that was created to manage the instances from the drop down (for me, this was manageInstances)
  • Ensure the Invocation type is set to Event.
  • You do not need to set the SNS topic, however if you need to know when this Amazon SES action is carried out, select the appropriate SNS topic (you will need to create an SNS topic and subscribe to it using your email address)
  • Click Next Step.
  • In the next screen, provide a name for the rule. Ensure the options Enabled and Enable spam and virus scanning are ticked.
  • Click Next Step and then review the settings.
  • Click Create Rule.

Usage

The solution, once implemented supports the following commands

help   - provides information about the commands and their syntax
status - provides the status of all Amazon EC2 instances in the region that the Lambda function is running in. It lists the instance-id and name of those instances (name is derived from the tag with the key Name)
start {instance-id} - starts the Amazon EC2 instance that has the specified instance-id
stop {instance-id}  - stops the Amazon EC2 instance that has the specified instance-id

To use, send an email from an approved sender’s email to the email address attached to Amazon SES.

The table below shows, what the subject must be, for each command.

Command Subject
Help help
Status for instances in us-east-1 status
Start an instance with instance-id i-0e7e011b42e814465 start i-0e7e011b42e814465
Stop an instance with instance-id i-0e7e011b42e814465 stop i-0e7e011b42e814465

The output of the status command is in the following format

<instance-id> <instance-name> <status> <private-ip> <public-ip>

for example
i-03a1ab124f554z805 LinuxServer01 Running 172.16.31.10 52.10.100.34

The only problem with the solution is that all commands are performed on Amazon EC2 instances running in the same AWS region as the Lambda function. What if you wanted to carry out the commands on another region?

For the keen eyed, you would have spotted the Easter egg I hid in the Lambda function code. Here is what the subject must be if the command is to be carried out in an AWS region different to where the Lambda function is running (simply provide the AWS region at the end of the command)

Command Subject
Help help
Status for instances in ap-southeast-2 (Sydney) status ap-southeast-2
Start an instance with instance-id i-0e7e011b42e814465 in ap-southeast-2 (Sydney) region start i-0e7e011b42e814465 ap-southeast-2
Stop an instance with instance-id i-0e7e011b42e814465 in ap-southeast-2 (Sydney) region stop i-0e7e011b42e814465 ap-southeast-2

There you go! Now you can keep an eye on and control your Amazon EC2 instances with just your email.

A good use case can be when you are commuting and need to RDP into your Windows Amazon EC2 instance from your mobile (I am guilty of doing this at times). You can quickly start the Amazon EC2 instance, get its public ip address, and then connect using RDP.  Once finished, you can shut down the instance to ensure you don’t get charged after that.

I hope this blog was useful to you. Till the next time, Enjoy!

A scenario-based tutorial for Azure Kubernetes Service – Part 2

Introduction

In this blog, we will dig a little deeper into Azure Kubernetes Service (AKS). What better way to do this than by building an AKS cluster ourselves! Just a heads-up, I will be using terminology that was introduced in part 1 of this mini-blog series. If you haven’t read it, or need a refresher, you can access it at https://nivleshc.wordpress.com/2019/03/04/a-scenario-based-tutorial-for-azure-kubernetes-service-part-1

Let’s start by describing the AKS cluster architecture. The diagram below provides a great overview.

(Image copied from https://docs.microsoft.com/en-au/azure/aks/media/concepts-clusters-workloads/cluster-master-and-nodes.png)

The AKS Cluster is made up of two components. These are described below

  • cluster master node is an Azure managed service, which takes care of the Kubernetes service and ensures all the application workloads are properly running.
  • node is where the application workloads run.

The cluster master node is comprised of the following components

  • kube-apiserver – this api server provides a way to interface with the underlying Kubernetes API. Management tools such as kubectl or Kubernetes dashboard interact with this to manage the Kubernetes cluster.
  • etcd – this provides a key value store within Kubernetes, and is used for maintaining state of the Kubernetes cluster and state
  • kube-scheduler – the role of this component is to decide which nodes the newly created or scaled up application workloads can run on, and then it starts these workloads on them.
  • kube-controller-manager – the controller manager looks after several smaller controllers that perform actions such as replicating pods and handing node operations

The node is comprised of the following

  • kubelet – this is an agent that handles the orchestration requests from the cluster master node and also takes care of scheduling the running of the requested containers
  • kube-proxy – this component provides networking services on each node. It takes care of routing network traffic and managing IP addresses for services and pods
  • container runtime – this allows the container application workloads to run and interact with other resources within the node.

For more information about the above, please refer to https://docs.microsoft.com/en-au/azure/aks/concepts-clusters-workloads

Now that you have a good understanding of the Kubernetes architecture, lets move on to the preparation stage, after which we will deploy our AKS cluster.

Preparation

AKS subnet size

AKS uses a subnet to host nodes, pods, and any other Kubernetes and Azure resources that are created for the AKS cluster. As such, it is extremely important that the subnet is appropriately sized, to ensure it can accommodate the resources that will be initially created, and still have enough room for any future updates.

There are two networking methods available when deploying an Azure Kubernetes Service cluster

  • Kubenet
  • Azure Container Networking Interface (CNI)

AKS uses kubnet by default, and in doing so, it automatically creates a virtual network and subnets that are required to host the pods in. This is a great solution if you are learning about AKS, however if you need more control, it is better to go with Azure CNI. With Azure CNI, you get the option to use an existing virtual network and subnet or you can create a custom one. This is a much better option, especially when deploying into a production environment.

In this blog, we will use Azure CNI.

The formula below provides a good estimate on how large your subnet must be, in order to accommodate your AKS resources.

Subnet size = (number of nodes + 1) + ((number of nodes + 1) * maximum number of pods per node that you configure)

When using Azure CNI, by default each node is setup to run 30 pods. If you need to change this limit, you will have to deploy your AKS cluster using Azure CLI or Azure Resource Manager templates.

Just as an example, for a default AKS cluster deployment, using Azure CNI with 4 nodes, the subnet size at a minimum must be

IPs required = (4 + 1) + ((4+ 1) * (30 pods per node)) = 5 + (5 * 30) = 155

This means that the subnet must be at least a /24.

For this blog, create a new resource group called myAKS-resourcegroup. Within this new resource group, create a virtual network called AKSVNet with an address space of 10.1.0.0/16. Inside this virtual network, create a subnet called AKSSubnet1 with an address range of 10.1.3.0/24.

Deploying an Azure Kubernetes Service Cluster

Let’s proceed on to deploying our AKS cluster.

  1. Login to your Azure Portal and add Kubernetes Service
  2. Once you click on Create, you will be presented with a screen to enter your cluster’s configuration information
  3. Under Basics
  • Choose the subscription into which you want to deploy the AKS cluster
  • Choose the resource group into which you want to deploy the AKS cluster. One thing to point out here is that the cluster master node will be deployed in this resource group, however a new resource group with a name matching the naming format MC_<AKS master node resource group name>_<AKS cluster name>_region will be created to host the nodes where the containers will run (if you use the values specified in this blog, your node resource group will be named MC_myAKS-resourcegroup_mydemoAKS01_australiaeast)
  • Provide the Kubernetes cluster name (for this blog, let’s call this mydemoAKS01)
  • Choose the region you want to deploy the AKS cluster in (for this blog, we are deploying in australiaeast region)
  • Choose the Kubernetes version you want to deploy (you can choose the latest version, unless there is a reason to choose a specific version)
  • DNS name prefix – for simplicity, you can set this to the same as the cluster name
  • Choose the Node size. (for this blog, lets choose D2s v3 (2 vcpu, 8 GB memory)
  • Set the Node count to 1 (the Node count specifies the number of nodes that will be initially created for the AKS cluster)
  • Leave the virtual nodes to disabled

Under Authentication

  • Leave the default option to create a service principal (you can also provide an existing service principal, however for this blog, we will let the provisioning process create a new one for us)
  • RBAC allows you to control who can view the Kubernetes configuration (kubeconfig) information and to limit the permissions that they have. For now, leave RBAC turned off

Under Networking

  • Leave HTTP application routing set to No
  • As previously mentioned, by default AKS uses kubenet for networking. However, we will use Azure CNI. Change the Network configuration from Basic to Advanced
  • Choose the virtual network and subnet that was created as per the prerequisites (AKSVNet and AKSSubnet1)
  • Kubernetes uses a separate address range to allocate IP addresses to internal services within the cluster. This is referred to as Kubernetes service address range. This range must NOT be within the virtual network range and must not be used anywhere else. For our purposes we will use the range 10.2.4.0/24. Technically, it is possible to use IP addresses for the Kubernetes service address range from within the cluster virtual network, however this is not recommended due to potential of IP address overlaps which could potentially cause unpredictable behaviour. To read more about this, you can refer to https://docs.microsoft.com/en-au/azure/aks/configure-azure-cni.
  • Leave the Kubernetes DNS service IP address as the default 10.2.4.10 (the default is set to the tenth IP address within the Kubernetes service address range)
  • Leave the Docker bridge address as the default 172.17.0.1/16. The Docker Bridge lets AKS nodes communicate with the underlying management platform. This IP address must not be within the virtual network IP address range of your cluster, and shouldn’t overlap with other address ranges in use on your network

Under Monitoring

  • Leave enable container monitoring set to Yes
  • Provide an existing Log Analytics workspace or create a new one

Under Tags

  • Create any tags that need to be attached to this AKS cluster
     4.  Click on Next: Review + create to get the settings validated.
After validation has successfully passed, click on Create.
Just be aware that it can take anywhere from 10 – 15 minutes to complete the AKS cluster provisioning.

While you are waiting

During the AKS cluster provisioning process, there are a number of things that are happening under the hood. I managed to track down some of them and have listed them below.

  • Within the resource group that you specified for the AKS cluster to be deployed in, you will now see a new AKS cluster with the name mydemoAKS01
  • If you open the virtual network that the AKS cluster has been configured to use and click on Connected devices, you will notice that a lot of IP addresses that have been already allocated.

    I have noticed that the number of IP addresses equals

    ((number of pods per node) + 1) * number of nodes

   FYI – for the AKS cluster that is being deployed in this blog, it is 31

  • A new resource group with the name complying to the naming format MC_<AKS master node resource group name>_<AKS cluster name>_region will be created. In our case it will be called MC_myAKS-resourcegroup_mydemoAKS01_australiaeast. This resource group will contain the virtual machine for the node (not the cluster master node), including all the resources that are needed for the virtual machines (availability set, disk, network card, network security group)

What will this cost me?

The cluster master node is a managed service and you are not charged for it. You only pay for the nodes on which the application workloads are run (these are those resources inside the new resource group that gets automatically created when you provision the AKS cluster).

In the next blog, we will delve deeper into the newly deployed AKS cluster, exposing its configuration using command line tools.

Happy sailing and till the next time, enjoy!

Replacing your Secure FTP Server with Amazon Simple Storage Service

Introduction

What if I told you that you could get rid of most of your servers, however still consume the services that you rely on them for? No longer will you have to worry about ensuring the servers are up all the time, that they are regularly patched and updated. Would you be interested?

To quote Werner Vogel “No server is easier to manage than no server”.

In this blog, I will show you how you can potentially replace your secure ftp servers by using Amazon Simple Storage Service (S3). Amazon S3 provides additional benefits, for instance, lifecycle policies which can be used to automatically move older files to a cheaper storage, which could potentially save you lots of money.

Architecture

The solution is quite simple and is illustrated in the following diagram.

Replacing Secure FTP with Amazon S3 - Architecture

We will create an Amazon S3 bucket, which will be used to store files. This bucket will be private. We will then create some policies that will allow our users to access the Amazon S3 bucket, to upload/download files from it. We will be using the free version of CloudBerry Explorer for Amazon S3, to transfer the files to/from the Amazon S3 bucket. CloudBerry Explorer is an awesome tool, its interface is quite intuitive and for those that have used a gui version of a secure ftp client, it looks very similar.

With me so far? Perfect. Let the good times begin 😉

Lets first configure the AWS side of things and then we will move on to the client configuration.

AWS Configuration

In this section we will configure the AWS side of things.

  1. Login to your AWS Account
  2. Create a private Amazon S3 bucket (for the purpose of this blog, I have created an S3 bucket in the region US East (North Virginia) called secureftpfolder)
  3. Use the JSON below to create an AWS Identity and Access Management (IAM) policy called secureftp-policy. This policy will allow access to the newly created S3 bucket (change the Amazon S3 bucket arn in the JSON to your own Amazon S3 bucket’s arn)
  4. {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Sid": "SecureFTPPolicyBucketAccess",
                "Effect": "Allow",
                "Action": "s3:ListBucket",
                "Resource": [
                    "arn:aws:s3:::secureftpfolder"
                ]
            },
            {
                "Sid": "SecureFTPPolicyObjectAccess",
                "Effect": "Allow",
                "Action": "s3:*",
                "Resource": [
                    "arn:aws:s3:::secureftpfolder/*"
                ]
            }
        ]
    }

    4. Create an AWS IAM group called secureftp-users and attach the policy created above (secureftp-policy) to it.

  5. Create AWS IAM Users with Programmatic access and add them to the AWS IAM group secureftp-users. Note down the access key and secret access key for the user accounts as these will have to be provided to the users.

Thats all that needs to be configured on the AWS side. Simple isn’t it? Now lets move on to the client configuration.

Client Configuration

In this section, we will configure CloudBerry Explorer on a computer, using one of the usernames created above.

  1. On your computer, download CloudBerry Explorer for Amazon S3 from https://www.cloudberrylab.com/explorer/amazon-s3.aspx. Note down the access key that is provided during the download as this will be required when you install it.
  2. Open the downloaded file to install it, and choose the free version when you are provided a choice between the free version and the trial for the pro version.
  3. After installation has completed, open CloudBerry Explorer.
  4. Click on File from the top menu and then choose New Amazon S3 Account.
  5. Provide a meaningful name for the Display Name (you can set this to the username that will be used)
  6. Enter the Access key and Secret key for the user that was created for you in AWS.
  7. Ensure Use SSL is ticked and then click on Advanced and change the Primary region to the region where you created the Amazon S3 bucket.
  8. Click OK  to close the Advanced screen and return to the previous screen.
  9. Click on Test Connection to verify that the entered settings are correct and that you can access the AWS Account using the the access key and secret access key.
  10. Once the settings have been verified, return to the main screen for CloudBerry Explorer. The main screen is divided into two panes, left and right. For our purposes, we will use the left-hand side pane to pick files in our local computer and the right-hand side pane to correspond to the Amazon S3 bucket.
  11. In the right-hand side pane, click on Source and from the drop down, select the name you gave the account that was created in step 4 above.
  12. Next, in the right-hand side pane, click on the green icon that corresponds to External bucket. In the window that comes up, for Bucket or path to folder/subfolder enter the name of the Amazon S3 bucket you had created in AWS (I had created secureftpfolder) and then click OK.
  13. You will now be returned to the main screen, and the Amazon S3 bucket will now be visible in the right-hand side pane. Double click on the Amazon S3 bucket name to open it. Viola! You have successfully created a connection to the Amazon S3 bucket.
  14. To copy files/folders from your local computer to the Amazon S3 bucket, select the file/folder in the left-hand pane and then drag and drop it to the right-hand pane.
  15. To copy files/folders from the Amazon S3 bucket to your local computer, drag and drop the files/folder from the right-hand pane to the appropriate folder in the left-hand pane.

 

So, tell me honestly, was that easy or what?

Just to ensure I have covered all bases (for now), here are few questions I would like to answer

A. Is the transfer of files between the local computer and Amazon S3 bucket secure?

Yes, it is secure. This is due to the Use SSL setting that we saw when configuring the account within CloudBerry Explorer.

B. Can I protect subfolders within the Amazon S3 bucket, so that different users have different access to the subfolders?

Yes, you can. You will have to modify the AWS IAM policy to do this.

C. Instead of a GUI client, can I access the Amazon S3 bucket via a script?

Yes, you can. You can download AWS tools to access the Amazon S3 bucket using the command line interface or PowerShell. AWS tools are available from https://aws.amazon.com/tools/

I hope the above comes in handy to anyone thinking of moving their secure ftp (or normal ftp) servers to a serverless architecture.